C. ABDUL HAKEEM COLLEGE (AUTONOMOUS), MELVISHARAM - 632 509. SEMESTER EXAMINATIONS, NOVEMBER - 2018

B.Sc., MATHEMATICS SEMESTER U18MMA101 – ALGEBRA & TRIGONOMETRY - I

Time: Three Hours Maximum: 75 Marks

SECTION - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions.

- 1. If α, β, γ are the roots of the equation $ax^3 + bx^2 + cx + d = 0$, then find the sum of the roots and product of the roots.
- 2. If α, β, γ are the roots of the equation $x^3 + p x^2 + qx + r = 0$, then find the value of $\alpha^2 + \beta^2 + \gamma^2$.
- 3. Increase by 2 the roots of the equation $x^4 x^3 10x^2 + 4x + 24 = 0$.
- 4. Show that the equation $x^7 3x^4 + 2x^3 1 = 0$ has at least four imaginary roots.
- 5. Prove that $\frac{e-1}{e+1} = \frac{\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \cdots \infty}{\frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \cdots \infty}$.
- 6. Show that $\log\left(\frac{n+1}{n-1}\right) = \frac{2n}{n^2+1} + \frac{1}{3}\left(\frac{2n}{n^2+1}\right)^3 + \frac{1}{5}\left(\frac{2n}{n^2+1}\right)^5 + \dots \infty$.
- 7. Write the expansion of $cosn\theta$.
- 8. Expand $\sin^2 \theta$ interms of multiples angles of θ .
- 9. Write the expansion of sin θ interms of θ .
- 10. Write the expansion of tan θ in terms of θ .

SECTION - B (5 X 5 = 25 Marks)

Answer **ALL** Questions.

11. a) Solve the equation $x^3 - 12x^2 + 39x - 28 = 0$ whose roots are in Arithmetic progression.

6

b) One of the root of the equation

 $3x^5 - 4x^4 - 42x^3 + 56x^2 + 27x - 36 = 0$ is $\sqrt{2} + \sqrt{5}$. Find the other roots.

12. a) If α is a root of the equation $x^3 + x^2 - 2x - 1 = 0$, then Show that $\alpha^2 - 2$ is also a root.

(Or)

- b) Find the equation whose roots are the roots of the equation $4x^4 + 32x^3 + 83x^2 + 76x + 21 = 0$ increased by 2 and hence solve the given equation.
- 13. a) If x is so small so that x^3 , x^4 and higher powers of x can be neglected show that nth root of $(1+x) = \frac{2n+(n+1)x}{2n+(n-1)x}$ nearly.

9

- b) Sum to infinity of the series $\frac{2.3}{3!} + \frac{3.5}{4!} + \frac{4.7}{5!} + \cdots \infty$.
- 14. a) Prove that $\cos 6 \theta = 32 \cos^6 \theta 48 \cos^4 \theta + 18 \cos^2 \theta 1$.

(Or)

- b) Expand $tan6\theta$ in powers of $tan \theta$.
- 15. a) Prove that $-64 \sin^7 \theta = \sin 7 \theta 7 \sin 5 \theta + 21 \sin 3 \theta 35 \sin \theta$.

9

b) Expand $\sin^3 \theta \cos^4 \theta$ in terms of sines of multiples of θ .

SECTION - C (3 X10 = 30 Marks)

Answer ANY THREE Questions.

- 16. Solve: $2x^6 9x^5 + 10x^4 3x^3 + 10x^2 9x + 2 = 0$.
- 17. Calculate two places of decimal the positive root of the equation is $x^3 + 24x 50 = 0$ by Horner's method.
- 18. Sum to infinity of the series $\frac{1}{1.1.3} + \frac{1}{2.3.5} + \frac{1}{3.5.7} + \cdots \infty$.
- 19. Prove that $\frac{\sin 7\theta}{\sin \theta} = 64 \cos^6 \theta 80 \cos^4 \theta + 24 \cos^2 \theta 1$.
- 20. Prove that $64 (\cos^8 \theta + \sin^8 \theta) = \cos 8\theta + 28 \cos 4\theta + 35$.
