C. ABDUL HAKEEM COLLEGE (AUTONOMOUS), MELVISHARAM - 632 509. SEMESTER EXAMINATIONS, NOVEMBER - 2018

B.Sc., PHYSICS SEMESTER III U15MPH301 - ELECTRICITY AND MAGNETISM

Time: Three Hours Maximum: 75 Marks

SECTION - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions.

- 1. State Poisson's equation.
- 2. Define capacitance with its unit.
- 3. What is absolute capacitance?
- 4. Mention any two applications of potentiometer.
- 5. Explain Mutual induction with its unit.
- 6. What do you mean by eddy current?
- 7. Define time constant in L-R circuit.
- 8. What is meant by decay of charges?
- 9. Define magnetic permeability
- 10. What are ferrimagnetic materials?

SECTION - B (5 X 5 = 25 Marks)

Answer ALL Questions.

 a) Obtain the relation between electric potential and electric field in vector form.

(Or.)

- b) Deduce an expression for energy of a charged capacitor.
- a) With theory, explain the calibration of high range voltmeter using potentiometer.

(Or.)

- b) Explain how absolute capacitance of capacitor is determined using a ballistic galvanometer.
- 13. a) Explain the measurement of Absolute mutual Induction by BG

(P)

- b) State Faraday's law of electromagnetic induction.
- 14. a) Describe with full theory, the method of measuring a high resistance by the leakage method.

(Or

- b) Obtain an expression for the growth of charge through an LCR circuit.
- 15. a) Compare the different properties of dia, para and ferromagnetic materials.

(<u>O</u>

b) Explain the Langevin's theory of ferromagnetism.

R18607 R18607

SECTION - C (3 X10 = 30 Marks) Answer **ANY THREE** Questions.

- 16. Explain the principle, construction and working of quadrant electrometer.
- Explain the construction and working of moving coil Ballaistic Galvanometer.
- 18. Explain the principle, construction and working of Anderson's bridge for determining self inductance of a coil.
- Obtain an expression for the decay of charge in a LCR circuit and discuss different condition.
- 20. Give an account of Weiss theory of ferromagnetism.
