C. ABDUL HAKEEM COLLEGE (AUTONOMOUS), MELVISHARAM - 632 509. SEMESTER EXAMINATIONS, NOVEMBER - 2018

B.Sc., MATHEMATICS SEMESTER V U15MMA503 - COMPLEX ANALYSIS

Time: Three Hours Maximum: 75 Marks

SECTION - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions.

- 1. If z = x + iy, then find the real and imaginary parts of $f(z) = z^2$.
- 2. Define entire function
- 3. Define conformal transformation
- 4. What is called a critical point of a transformation?
- 5. State Cauchy-Goursat theorem.
- Define a simple arc.
- State Taylor's theorem.
- 8. Write the Maclaurin's series of $f(z) = e^z$.
- 9. Define Residue
- 10. Evaluate $\int_{c} e^{z} dz$ where c: |z| = 1.

SECTION - B (5 X 5 = 25 Marks)

Answer ALL Questions.

11. a) Prove that real and imaginary parts of an analytic function are harmonic

(Or)

- b) Derive Cauchy-Riemann equations in polar coordinates.
- 12. a) Show that the transformation $w = e^z$ maps the rectangular region $a \le x \le b$, $c \le y \le d$ onto the region $e^a \le \rho \le e^b$, $c \le \phi \le d$.

6

- b) Explain the function $z^{1/2}$.
- 13. a) Find I = $\int_C \bar{z} dz$ when C is the right-hand half $z = 2e^{i\theta}$ of the circle

(Or)

|z| = 2 from z = -2i to z = 2i

- State and prove the maximum modulus principle.
- 14. a) Find the Maclaurin series expansion of z^2e^{3z}

Qr.

- b) Expand the function $f(z) = (1 + z^2) / (z^3 + z^5)$ into a series involving powers
- 15. a) Find the residues of $f(z) = (z+1)/(z^2+9)$ at its poles
- b) Find the residues of $f(z) = \cot z$ at its poles.

R18579

R18579

SECTION - C (3 X10 = 30 Marks)

Answer ANY THREE Questions.

- 16. Prove that if f(z) = u(x, y) + v(x, y) and if f'(z) exists at a point $z_0 = x_0 + y_0$, then the first order partial derivatives of u and v must exist at (x_0, y_0) and they must satisfy the Cauchy-Riemann equations $u_x = v_y$ and $u_y = -v_x$ at (x_0, y_0) . Also prove that $f'(z_0) = u_x + iv_x$ where these partial derivatives are evaluated at (x_0, y_0) .
- 17. Discuss the function 1/z.
- 18. State and prove Cauchy's integral formula.
- 19. State and prove Laurent's theorem.
- 20. Show that $\int_0^\infty \frac{2x^2 1}{x^4 + 5x^2 + 4} \, dx = \frac{\pi}{4}.$

R18579