C. ABDUL HAKEEM COLLEGE (AUTONOMOUS), MELVISHARAM - 632 509. SEMESTER EXAMINATIONS, NOVEMBER - 2018

B.Sc., MATHEMATICS SEMESTER V U15MMA502 / U14MMA502 - REAL ANALYSIS - I

Time: Three Hours Maximum: 75 Marks

SECTION - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions.

- Define Equivalent Sets.
- Define Sequence and Subsequence.
- 3. Explain Monotone sequence with an example.
- 4. Define Cauchy Sequence.
- 5. Is $\sum_{n=1}^{\infty} \frac{n}{n+1}$ convergent?
- 6. For what value of p does the series $1 / 1^p 1 / 2^p + 1 / 3^p 1 / 4^p + \dots$ converge?
- 7. Define the class 1².
- Define Metric space M.
- 9. Define Continuous function.
- 10. Define dense with an example.

SECTION - B (5 X 5 = 25 Marks)

Answer ALL Questions.

- 11. a) If A_1, A_2, \ldots are countable sets, then prove than $U^{\infty}_{n=1}$ An is countable.
- b) Prove that all subsequence's of a convergent sequence of real numbers converges to the same limit.
- 12. a) If the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ is convergent, then prove that $\{s_n\}_{n=1}^{\infty}$ is bounded.

(Or

- b) If $\{s_n\}_{n=1}^{\infty}$ is a Cauchy sequence of real number, then prove that $\{s_n\}_{n=1}^{\infty}$ is bounded.
- a) State and prove Comparison test.

(Or

- b) If $\sum_{n=1}^{\infty} |a_n| = \infty$ and if $\lim_{n \to \infty} |a_n| / |b_n|$ exists, then prove that $\sum_{n=1}^{\infty} |b_n| = \infty$.
- 14. a) If $\{a_n\}_{n=1}^{\infty}$ is a non increasing sequence of positive numbers and if $\sum_{n=1}^{\infty} 2^n a_2^n$ converges, then prove that $\sum_{n=1}^{\infty} a_n$ converges.
- b) If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then prove that f(x) + g(x) has a limit as $x\to a$ and, in fact, $\lim_{x\to a} [f(x) + g(x)] = L + M$.
- 15. a) If the real valued functions f and g are continuous at a $\in \mathbb{R}^{1}$, then prove that f+g, f-g and fg are continuous at a. If $g(a)\neq 0$, then prove that f/g is also continuous at a.

Or)

R18577 R18577

F is open. G is closed. Conversely, if F is a closed subset of M, then prove that $F^{1-}M$ b) Let G be an open subset of the Metric space M. then prove that $G^1 = M$ -

SECTION - C $(3 \times 10 = 30 \text{ Marks})$ Answer ANY THREE Questions.

- 16. If A is any non empty subset of R that is bounded below, then prove that A has a greatest lower bound in R.
- 17. Prove that the sequence $\{(1+1/n)^n\}_{n=1}^{\infty}$ is convergent.
- 18. If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then prove that $\sum_{n=1}^{\infty} a_n$ converges
- 19. Let <M, $\rho >$ be a metric space. If $\{s_n\}_{n=1}^{\infty}$ is a convergent sequence of points of M, then prove that $\{s_n\}_{n=1}^{\infty}$ is Cauchy.
- 20. Prove that the real valued function f is continuous at a iff wherever $\{x_n\}_{n=1}^{\infty}$ converges to a then $\{f(x_n)\}_{n=1}^{\infty}$ converges to f(a).
