C. ABDUL HAKEEM COLLEGE (AUTONOMOUS), MELVISHARAM - 632 509. SEMESTER EXAMINATIONS, NOVEMBER - 2018

B.Sc., MATHEMATICS SEMESTER V U15MMA501 / U14MMA501 – ABSTRACT ALGEBRA

Time: Three Hours Maximum: 75 Marks

SECTION - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions.

- Define abelian group.
- 2. What is congruent?
- Define homomorphism.
- 4. Prove that every subgroup of an abelian group is normal.
- 5. What is meant by even permutation?
- 6. Find the orbits and cycles of the following permutation

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 8 & 1 & 6 & 4 & 7 & 5 & 9 \end{pmatrix}.$

- 7. What is field?
- 8. Find the zero divisors of Z_{12} .
- 9. Define principal ideal ring.
- Define prime element.

SECTION - B (5 X 5 = 25 Marks)

Answer ALL Questions.

11. a) State and prove Euler theorem.

(D.)

- b) If G is a finite group whose order is a prime number p, then prove that G is a cyclic group.
- 12. a) Prove that HK is a subgroup of G if and only if HK = KH.

Qr.

- b) If ϕ is a homomorphism of G into \overline{G} , then prove that.
- (i) $\phi(e) = \overline{e}$, the unit element of \overline{G} .
- (ii) $\phi(x^{-1}) = \phi(x)^{-1}$ for all $x \in G$
- 13. a) Prove that every permutation is the product of its cycles

Or.

- b) Express (1, 2, 3), (4, 5) (1, 6,7,8,9) (1, 5) as the product of disjoint cycles
- 14. a) If ϕ is a homomorphism of R into R' with Kernel I(ϕ), then prove that
- (i) I (φ) is a subgroup of R under addition
- (ii) If $a \in I(\phi)$ and $r \in R$ then both ar and ra are in $I(\phi)$.

0

b Show that a finite integral domain is a field

a) Prove that a Euclidean ring possesses a unit element.

(Or

b) Let R be a Euclidean ring and a, $b \in R$. If $b \ne 0$ is not a unit in R, then prove that d(a) < d(ab).

R18575

R18575

SECTION - C (3 X10 = 30 Marks)

Answer ANY THREE Questions.

- 16. Prove that the relation $a \equiv b \mod H$ is an equivalence relation.
- 17. State and prove Fundamental theorem of homomorphism.
- 18. Show that every group is isomorphic to a sub group of A(s) for some appropriate S.
- 19. If R is a ring, for all a, $b \in R$, then prove that.
- (i) a0 = 0a = 0
- (ii) a(-b) = (-a)b = -(ab)
- (iii) (-a)(-b) = ab.

If, in addition, R has a unit element 1, then prove that

- (iv) (-1) a = -a
- (v) (-1)(-1) = 1
- 20. If R is a commutative ring with unit element and M is an ideal of R, then prove that M is a maximal ideal of R if and only if R/M is a field.
