C. ABDUL HAKEEM COLLEGE (AUTONOMOUS), MELVISHARAM - 632 509. SEMESTER EXAMINATIONS, NOVEMBER - 2018

B.Sc., MATHEMATICS U15MMA102 – DIFFERENTIAL CALCULUS AND 2 - D GEOMETRY

Time: Three Hours Maximum: 75 Marks

SECTION - A $(10 \times 2 = 20 \text{ Marks})$

Answer **ALL** Questions.

- 1. Find the nth derivative of y = cos(ax + b).
- 2. Find the Jacobian determinant for the transformation u = x + 3y and v = x 3y.
- 3. Show that in the curve $r = e^{\theta cot\alpha}$, the polar subtangent is $rtan\alpha$.
- 4. Find the radius of curvature of the curve $x^4 + y^4 = 2$ at the point (1,1).
- 5. Show that the asymptotes of $x^2y^2 = c^2(x^2 + y^2)$ are the sides of a square.
- 6. Write the formula to find the values of 'c' in finding the equation of asymptote of the curve y = mx + c.
- 7. Define the pole of the locus.
- 8. What are conjugate points and conjugate lines?
- 9. Write down the equation of the hyperbola conjugate to $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 10. Find the conjugate diameter of $y = \frac{b}{a} \sin \theta x$ with respect to the hyperbola.

SECTION - B (5 X 5 = 25 Marks)

Answer ALL Questions.

- 11. a) Find the nth derivative of log(ax + b).
- (T)
- b) Solve the total differential equation $y^2 dx z dy + y dz = 0$.
- 12. a) Find the angle of intersection of the cardioid $r = a(1 + cos\theta)$ and $r = b(1 cos\theta)$.

<u>C</u>

- b) From the polar equation of the parabola, show that $p^2 = ar$.
- 13. a) Find the asymptotes of the cubic $y^3 6xy^2 + 11x^2y 6x^3 + x + y = 0$.
- (Or)
- b) Find the asymptotes of $y^3 = x(4 x^2)$.
- 14. a) Find the equation of the chord of the circle $x^2 + y^2 11x 2y 24 = 0$ for which (1, 2) is the middle point.

Ō

- b) If the polar of P passes through Q then show that the polar of Q passes through P.
- 15. a) If e_1 , e_2 are the eccentricities of a hyperbola and its conjugate then show that $\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1$.

(Or)

b) If a pair of conjugate diameters meet the hyperbola and its conjugate in P and D, then prove that $CP^2-CD^2=a^2-b^2$.

R18570 R18570

SECTION - C (3 X10 = 30 Marks)

Answer ANY THREE Questions.

- 16. If $u = a^3x^2 + b^3y^2 + c^3z^2$ where $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$, find the minimum value of u
- 17. Show that the radius of curvature of the curve $r^n = a^n cosn\theta$ is $\frac{a^n r^{-n+1}}{n+1}$.
- 18. Find the asymptotes of $x^3 + 2x^2y xy^2 2y^3 + 4y^2 + 2xy + y 1 = 0$.
- 19. Find the equation of the polar of the point (x_1, y_1) with respect to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$.
- 20. Prove that the acute angle between two conjugate diameters of an ellipse is a minimum when they are equal.
