C. ABDUL HAKEEM COLLEGE (AUTONOMOUS), MELVISHARAM - 632 509. SEMESTER EXAMINATIONS, NOVEMBER - 2018

B.B.A., U15MBA303 / U14MBA303 — OPERATIONS RESEARCH

Time: Three Hours Maximum: 75 Marks

SECTION - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions.

- Define Operations research.
- 2. What is a constraint in LPP model?
- 3. What is meant by balanced assignment problem?
- 4. How to convert an unbalanced transportation problem into a balanced one?
- 5. What is dominance property?
- 6. What is meant by a pure strategy?
- 7. What is idle time?
- Give examples for items whose efficiency deteriorates suddenly.
- Expand CPM.
- 10. What is an event?

SECTION - B (5 X 5 = 25 Marks)

Answer ALL Questions.

11. a) Enumerate the applications of OR.

(Or.)

- b) A company has three operational departments with capacity to produce three different types of clothes namely suiting, shirting and woolens yielding profit Rs 2, Rs 4 and Rs 3 per meter respectively. One meter suiting requires 3 minutes in weaving, 2 minutes in processing and 1 minute in packing. Similarly one meter shirting requires 4 minutes in weaving, 1 minute in processing and 3 minutes in packing, while one meter woolen requires 3 minutes in each department. In a week, total runtime of each department is 60, 40 and 80 hours for weaving, processing and packing departments respectively. Formulate the LPP to find the product mix to maximize the profit.
- 12. a) Solve using LCM.

	<u></u>	С			1
	4	0	4	0	_
	6	2	သ	2	2
(Or)	8	2	2	သ	သ
	6	_	0	4	4
		10	~	6	Supply

b) A computer centre has got three expert programmers. Assign programmers to programmes in such that total computer time is least.

d				
4	2	<u>-</u>		
21	15	20	A	
28				
26	31	19	С	mmes
12	28	13	D	

R18798 R18798

13. a) Six jobs must go through two machines A and B in the order AB. using minimize elapsed time. the given processing time in hours, determine the sequence that will

	Machine B	Machine A	Job
	6	2	1
(Or)	7	4	2
	4	9	3
	3	6	4
	3	7	5
	11	4	6

should be replaced. b) A company purchases a machine for Rs 80000 and its scrap value is Rs 100. Based on the maintenance cost, determine at which time the machine

Maintenance cost (RS)	Year
100	1
250	2
400	3
600	4
900	5
1,200	6
1,600	7

a) Solve the game and find best strategies for company A & B:

		Company A		
(Or)	2	1	2	C
	6	-5	4	ompany B
	-2	4	2	

b) Determine optimal strategies and value of the game

Player B

Player A

15. a) Draw the network for the following information.

Immediate predecessor Activity (Or.) ₿ \triangleright В D C,D

b) List out the rules for constructing a network diagram

SECTION - C (3 X 10 = 30 Marks)

Answer ANY THREE Questions.

Solve graphically.

 $2x_1 + 3x_2 \le 120$; Maximize $Z = 6x_1 + 4x_2$, subject to constraints $2x_1 + x_2 \le 60;$ $x_1, x_2 \ge 0$

17. Obtain solution using VAM

Demand		Origin		Destination
	\coprod	П	Ι	
200	9	ယ	4	A
400	4	7	2	В
300	w	5	7	С
300	_	8	ယ	D
	500	450	250	supply

18. Use dominance property and solve the game.

Player A

19. Find the sequence that minimizes total elapsed time in performing the following jobs on three machines in the order ABC:

Machine C	Machine B	Machine A	Job
13	8	3	1
14	6	12	2
9	4	5	3
12	6	2	4
8	3	9	5
13	1	11	

20. For the following activities, construct a network diagram.

4-5	3-5	2-5	2-3	1-4	1-3	1-2	Activity
6	2	7	8	6	3	5	Normal time (days)

Find critical path, project time and float time.
