C. ABDUL HAKEEM COLLEGE (AUTONOMOUS), MELVISHARAM - 632 509. SEMESTER EXAMINATIONS, NOVEMBER - 2018

B.Sc., PHYSICS & CHEMISTRY
U15AMA101 / U15AMA301 / U14AMA301 – MATHEMATICS - I
(ALLIED)

Time: Three Hours Maximum: 75 Marks

SECTION - A $(10 \times 2 = 20 \text{ Marks})$

Answer **ALL** Questions.

- 1. Prove that $\frac{e-1}{e+1} = \frac{\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \cdots \infty}{\frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \cdots \infty}$.
- 2. Write expansion of log(1+x).
- 3. One of the roots of the equation

 $3x^5 - 4x^4 - 42x^3 + 56x^2 + 27x - 36 = 0$ is $\sqrt{2} + \sqrt{5}$. Find the other roots.

- 4. Diminish by 2 the roots of the equation $x^4 + x^3 3x^2 + 2x 4 = 0$.
- Define Hermition Matrix.
- 6. Prove that the matrix $\begin{pmatrix} Cos\theta & -Sin\theta \\ Sin\theta & Cos\theta \end{pmatrix}$ is orthogonal.
- 7. Write expansion for $\tan n\theta$...
- 8. Write relations between circular and hyperbolic functions.
- 9. Find n-th derivative of sin(ax + b).
- 10. If x = u(1+v); y = v(1+u), then find $\frac{\partial(x,y)}{\partial(u,v)}$.

SECTION - B (5 X 5 = 25 Marks)

Answer ALL Questions

- 11. a) Resolve into partial fractions $\frac{2x+3}{(x^2+1)(x+4)}$
- (Or)
- b) Prove that $\log(\frac{n+1}{n-1}) = \frac{2n}{n^2+1} + \frac{1}{3}(\frac{2n}{n^2+1})^3 + \frac{1}{5}(\frac{2n}{n^2+1})^5 + \dots \infty$.
- 12. a) Solve the equation $2x^3 x^2 22x 24 = 0$ given that two of its roots are in the ratio 3:4.

(Or)

- b) Solve the equation $4x^4 20x^3 + 33x^2 20x + 4 = 0$.
- 13. a) Express $\begin{pmatrix} 6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1 \end{pmatrix}$ as sum of a symmetric and Skew-Symmetric matrix.

(Or)

- b) Show that $\begin{pmatrix} \frac{1+i}{2} & \frac{-1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2} \end{pmatrix}$ is unitary.
- 14. a) If $\frac{\tan \theta}{\theta} = \frac{2524}{2523}$, then find θ approximately.

(<u>F</u>

- b) Find the value of Log(4+3i).
- a) If $y = (x + \sqrt{1 + x^2})^m$ prove that $(1 + x^2)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 m^2)y_n = 0.$
- b) Find the angle between the radius vector and the tangent at any point for the curve $r = a(1 + \cos \theta)$.

(Or)

SECTION - C $(3 \times 10 = 30 \text{ Marks})$

Answer ANY THREE Questions.

- 16. Sum to infinity the series $\frac{11.14}{10.15.20} + \frac{11.14.17}{10.15.20.25} + \cdots \infty$.
- 17. Find by Newton's method an approximate value of the positive root of the equation $x^3 2x 5 = 0$.
- 18. Verify Cayley Hamilton Theorem of the matrix $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Also find A^{-1} .
- 19. Prove that $64(\cos^8\theta + \sin^8\theta) = \cos 8\theta + 24\cos 4\theta + 35$.
- 20. Find the radius of curvature of the curve $a^3 x^3 = xy^2$ at the point (a, 0).
