C. ABDUL HAKEEM COLLEGE (AUTONOMOUS), MELVISHARAM - 632 509. SEMESTER EXAMINATIONS, NOVEMBER - 2018

B.Sc., MATHEMATICS SEMESTER V U14MMA503 – COMPLEX ANALYSIS - I

Time: Three Hours Maximum: 75 Marks

SECTION - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions.

- 1. What is a complex number?
- 2. Find the principal value of $(-i)^i$.
- 3. State the condition for a function "f" to be continuous.
- Write Cauchy Riemann equations in polar form.
- 5. Verify whether the function $u = y^3 3x^2y$ is harmonic or not.
- 6. Define conformal mapping.
- 7. Find the transformation of the function $w = \frac{4z^2}{(1-z)^2}$ at $z = \infty$.
- 8. What do you mean by a fixed point of a transformation?
- Define a contour
- State Cauchy Goursat's theorem.

SECTION - B (5 X 5 = 25 Marks)

Answer ALL Questions.

a) Discuss some algebraic properties of complex numbers.

(O<u>r</u>)

- b) Derive the exponential laws (i) $\exp(z_1 + z_2) = (\exp z_1)(\exp z_2)$
- (ii) $\exp(z_1 z_2) = \frac{(\exp z_1)}{(expz_2)}$.
- 12. a) Show that the function \bar{z} is nowhere differentiable.

<u>O</u>

- b) Prove that the function $1 + z^2$ is entire.
- 13. a) Find f(z) if $u = x^2 y^2$.

(Or

- b) Show that the function $u(x, y) = \sin x \cos hy$ is harmonic. Find its harmonic conjugate and analytic function.
- 14. a) Find the bilinear transformation which maps the points z = 0, -i, -1 into w = i, 1, 0.

(Or)

- b) Show that the transformation $w = z^2$ maps the rectangular hyperbolas onto the straight lines.
- 15. a) Find the value of the integral $\int_{C_1} z^2 dz$ where $c_1: |z| = 1$.

(Or)

b) Evaluate $\int_c \frac{zdz}{(z-1)(z-2)}$ where c: |z| = 3.

R18587 R18587

SECTION - C (3 X10 = 30 Marks)

Answer ANY THREE Questions.

- 16. Explain stereographic projection.
- 17. State and prove the sufficient conditions for the existence of the derivative f'(z).
- 18. Prove that the mapping w = f(z) is conformal in D if f(z) is analytic in a region D and if $f'(z) \neq 0$ in D.
- 19. Discuss the transformation $w = \sin z$.
- 20. State and prove Cauchy's Integral formula.
