C. ABDUL HAKEEM COLLEGE (AUTONOMOUS), MELVISHARAM - 632 509. SEMESTER EXAMINATIONS, NOVEMBER - 2018

B.Sc., MATHEMATICS SEMESTER V U14EMA501 - GRAPH THEORY (ELECTIVE - I)

Time: Three Hours Maximum: 75 Marks

SECTION - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions.

- Draw Peterson graph.
- 2. Draw the complete graph with 5 points.
- 3. Define incidence matrix of a graph.
- 4. Define union of two graphs.
- 5. Define terminal point.
- 6. Define bridge of a graph.
- Define a Hamiltonian cycle.
- 8. Define connectivity of a graph.
- 9. Define tree
- Define centre of a tree.

SECTION - B (5 X 5 = 25 Marks)

Answer ALL Questions.

11. a) Show that in any group of two or more people, there are always two with exactly the same number of friends inside the group.

(Or

- b) Prove that a set S⊆V is an independent set of G if and only if V-S is a covering of G.
- 12. a) Draw the graph K₅ and write down its incidence matrix.

(Or

- b) Prove that every graph is an intersection graph.
- 13. a) If G is not connected then \bar{G} is connected.

9

- b) Prove that every non-trivial connected graph has at least two points which are not cutpoints.
- 14. a) Prove that if G is a k-connected graph the $q \ge \frac{pk}{2}$.

Ö

- b) Show that the Petersen graph is Non-Hamiltonian
- 15. a) If G is a acyclic with p = q + 1 then prove that G is a tree

(Or

b) Prove that every connected graph has a spanning tree.

R18873 R18873

SECTION - C (3 X10 = 30 Marks)

Answer ANY THREE Questions.

- 16. Prove that the maximum number of lines among all p point graphs with no triangles is $\left[\frac{p^2}{4}\right]$.
- 17. Let G_1 be a (p_1,q_1) graph and G_2 a (p_2,q_2) graph. Then show that.
- (i) $G_1 \cup G_2$ is a (p_1+p_2, q_1+q_2) graph.
- (ii) $G_1 + G_2$ is a $(p_1 + p_2,\, q_1 + q_2 + p_1 p_2)$ graph
- 18. Prove that a graph *G* with at least two points is bipartite iff all its cycles are of even length.
- 19. Prove that the following statements are equivalent for a connected graph G.
- G is Eulerian.
- (ii) Every point of G has even degree.
- (iii) The set of edges of G can be partitioned into cycles.
- Prove that if a connected graph G has exactly one spanning tree T, then G=T.
