C. ABDUL HAKEEM COLLEGE (AUTONOMOUS), MELVISHARAM - 632 509. SEMESTER EXAMINATIONS, NOVEMBER - 2018

M.Sc., MATHEMATICS P18MMA103 — ORDINARY DIFFERENTIAL EQUATIONS

Time: Three Hours Maximum: 75 Marks

SECTION - A (5 X 6 = 30 Marks)

Answer ALL Questions

- 1. a) Let a_1 , a_2 be constants and consider the equation $L(y) = y'' + a_1y' + a_2y = 0$. If r_1 , r_2 are distinct roots of the characteristic polynomial p, where $p(r) = r^2 + a_1r + a_2$, then the functions ϕ_1 , ϕ_2 defined by $\phi_1(x) = e^{r_1x}$, $\phi_2(x) = e^{r_2x}$ are solutions of L(y) = 0, If r_1 is a repeated root of p, then prove that the functions ϕ_1 , ϕ_2 defined by $\phi_1(x) = e^{r_1x}$, $\phi_2(x) = xe^{r_1x}$ are solution of L(y) = 0.
- b) Let ϕ_1 , ϕ_2 are two solutions of L(y) = 0 on an interval I, containing a point x_0 , then prove that W(ϕ_1 , ϕ_2) (x) = $e^{-a_1(x-x_0)}$ W (ϕ_1 , ϕ_2) (x_0).
- 2. a) Let ϕ be any solution $L(y) = y^{(n)} + a_1 \ y^{(n-1)} + \ldots + a_n \ y = 0$ on an interval I containing a point x_0 . Then prove that for all x in I. $\| \phi(x_0) \| e^{-K|x-x_0|} \le \| \phi(x) \| \le \| \phi(x_0) \| e^{K|x-x_0|}, \text{ where } K = 1 + |a_1| + \ldots + |a_n|.$
- $\|\mathbf{x}_0\| \|\mathbf{e}^{-\kappa_{|\mathbf{x}-\mathbf{x}_0|}} \le \|\phi(\mathbf{x})\| \le \|\phi(\mathbf{x}_0)\| \|\mathbf{e}^{\kappa_{|\mathbf{x}-\mathbf{x}_0|}}, \text{ where } \mathbf{K} = 1 + |\mathbf{a}_1| + \dots + |\mathbf{a}_n|.$ (Or)
- b) The correspondence which associates with each
- $L=a_0\ D^n+a_1\ D^{n-1}+\ldots+a_n$ its characteristics polynomial p given by $p(r)=a_0r^n+a_1r^{n-1}+\ldots+a_n$ is a one-to-one correspondence between all linear differential operators with constant coefficients and all polynomials. If L, M

- are associated with p, q respectively then prove that L + M is associated with p+q, ML is associated with pq and α L is associated with α p (α a constant).
- a) State and prove uniqueness theorem for initial value problem for the homogeneous equation.

(Or)

- b) Let $\phi_1 \dots \phi_n$ be the n solutions of L(y) = 0 on I satisfying
- $\varphi_i^{(i-1)}\left(x_0\right)=1,\ \varphi_i^{(j-1)}\left(x_0\right)=0,\ j\neq i.\ \text{If}\ \varphi\ \text{is any solution of}\ L(y)=0\ \text{on}\ I,\ \text{prove}$ that there are n constants $c_1....c_n$ such that $\varphi=c_1\ \varphi_1+.....+c_n\ \varphi_n.$
- a) Show that

(i)
$$J_{\alpha-1}(x) - J_{\alpha+1}(x) = 2J'_{\alpha}(x)$$
 (ii) $J_{\alpha-1}(x) + J_{\alpha+1}(x) = 2\alpha x^{-1}J'_{\alpha}(x)$.
(Or)

- b) Compute the indicial polynomials, and their roots, for the following equation $x^2y'' + (x + x^2)y' y = 0.$
- 5. a) Verify the following equation is exact and solve them $y' = \frac{3x^2 2xy}{x^2 2y}$.

Q,

b) Prove that a function ϕ is a solution of the initial value problem y' = f(x, y), $y(x_0) = y_0$ on an interval I if and only if it is a solution of the integral equation $y = y_0 + \int_{x_0}^{x} f(t, y) dt$ on I.

N18528 N18528

SECTION - B (3 X 15 = 45 Marks)

Answer ANY THREE Questions.

6. Let ϕ be any solution of $L(y) = y'' + a_1 y' + a_2 y = 0$ on an interval I containing a point x_0 . Then prove that for all x in I.

$$\begin{split} &\|\varphi\left(x_{0}\right)\parallel e^{-K\parallel x-x0\parallel}\leq \parallel \varphi(x)\parallel \leq \parallel \varphi(x_{0})\parallel e^{K\parallel x-x0\parallel}\\ &\text{where } \|\varphi\left(x\right)\parallel =\left[\ |\varphi(x)|^{2}+|\varphi^{1}(x)|^{2}\right]^{\frac{1}{2}},\ K=1+|a_{1}|+|a_{2}|. \end{split}$$

- 7. Using the annihilator method, find a particular solution of $y'' 4y = 3e^{2x} + 4e^{-x}$.
- 8. Obtain the solution of Legendre equation.
- 9. Derive Bessel functions of zero order of the second kind
- 10. Let M, N be two real valued functions which have continuous first partial derivatives on some rectangle R: $|x x_0| \le a$, $|y y_0| \le b$. Then prove that the equation M(x, y) + N(x, y) y=0 is exact in R if and only if, $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ in R.
