C. ABDUL HAKEEM COLLEGE (AUTONOMOUS), MELVISHARAM - 632 509. SEMESTER EXAMINATIONS, NOVEMBER - 2018

M.Sc., MATHEMATICS P18MMA102 - REAL ANALYSIS - I

SEMESTER I

Time: Three Hours Maximum: 75 Marks

SECTION - A (5 X 6 = 30 Marks)

Answer ALL Questions

1. a) Let f be an increasing function defined on [a,b] and let $x_0,x_1,...,x_n$ be n+1 points such that $a=x_0< x_1< \cdots < x_n=b$. Then prove that $\sum_{k=1}^{n-1}[f(x_k+)-f(x_k-)] \leq f(b)-f(a)$.

(Or)

- b) If f is continuous on [a, b] and if f' exists and is bounded in the interior, say $|f'(x)| \le A$ for all $x \in (a, b)$, then prove that f is of bounded variation on [a, b].
- 2. a) If $f \in R(\alpha)$ and if $g \in R(\alpha)$ on [a, b], then prove that $c_1 f + c_2 g \in R(\alpha)$ on [a, b], also show that $\int_a^b (c_1 f + c_2 g) d\alpha = c_1 \int_a^b f d\alpha + c_2 \int_a^b g d\alpha$.
- b) Assume that $\alpha \nearrow$ on [a,b]. Then prove that (i) If P' is finer than P then $U(P',f,\alpha) \le U(P,f,\alpha)$ and $L(P',f,\alpha) \ge L(P,f,\alpha)$, (ii) For any two partitions P_1 and P_2 , $L(P_1,f,\alpha) \le U(P_2,f,\alpha)$.
- 3. a) If f is continuous on [a, b] and if α is of bounded variation on [a, b], then prove that $f \in R(\alpha)$ on [a, b].

(Or)

- State and prove second Mean-Value Theorem for Riemann- Stieltjes integrals.
- 4. a) State and Prove Dirichlet's test.

(Or)

- b) Assume that each $a_n > 0$. Then prove that the product $\prod (1 a_n)$ converges if and only if, the series $\sum a_n$ converges.
- 5. a) Assume that $f_n \to f$ uniformly on S. If each f_n is continuous at a point c of S, then prove that the limit function f is also continuous at c.

b) State and prove Cauchy condition for uniform convergence of series.

SECTION - B (3 X 15 = 45 Marks) Answer **ANY THREE** Questions.

- 6. Let f be of bounded variation on [a, b] and assume that $c \in (a, b)$. Then prove that f is of bounded variation on [a, c] and on [c, b], also show that $V_f(a, b) = V_f(a, c) + V_f(c, b)$.
- 7. Assume that $c\epsilon(a, b)$. Prove that if two of the three integrals in $\int_a^c f d\alpha + \int_c^b f d\alpha = \int_a^b f d\alpha$ exists, then the third also exists.
- 8. Let α be of bounded variation on [a, b]. Let V(x) denote the total variation of α on [a, x] if $a < x \le b$, and let V(a) = 0. Let f be defined and bounded on [a, b]. If $f \in R(\alpha)$ on [a, b], then prove that $f \in R(V)$ on [a, b].
- State and prove Mertens theorem.

N18525 N18525

- 10. Let α be of bounded variation on [a,b]. Assume that each term of the sequence $\{f_n\}$ is real –valued function such that $f_n \in R(\alpha)$ on [a,b], for each n=1,2,... Assume that $f_n \to f$ uniformly on [a,b] and define $g_n(x) = \int_a^x f_n(t) d\alpha(t)$ if $x \in [a,b], n=1,2,...$ Then prove that
- (i) $f \in R(\alpha)$ on [a, b],
- (ii) $g_n \to g$ uniformly on [a, b], where $g(x) = \int_a^x f(t) d\alpha(t)$.
