C. ABDUL HAKEEM COLLEGE (AUTONOMOUS), MELVISHARAM - 632 509. SEMESTER EXAMINATIONS, NOVEMBER - 2018

M.Sc., MATHEMATICS SEMESTER III P15MMA301 – COMPLEX ANALYSIS - I

Time: Three Hours Maximum: 75 Marks

SECTION - A (5 X 6 = 30 Marks)

Answer ALL Questions

- a) If the pricewise differentiable closed curve γ does not pass through the point
 (a' then prove that the value of the integral ∫_γ dz / z-a is a multiple of 2 πi.
 (Or)
- b) Prove that an analytic function comes arbitrarily close to any complex value in every neighborhood of an essential singularity.
- 2. a) Prove that a region Ω is simply connected if and only if $n(\gamma,a)=0$ for all cycles γ in Ω and all points 'a' which do not belong to Ω .
- (Or)
- b) State and prove Rouche's theorem.
- 3. a) Derive Poisson's formula.
- (Or
- b) State the Mean –value property and prove that the arithmetic mean of a harmonic function over concentric circles $|z| = \gamma$ is a linear function of $\log r$, i.e. $1/2\pi \int_{|z|=r} u \, d\theta = \alpha \log r + \beta$, and if u is harmonic in a disk $\alpha = 0$ and the arthimetic mean is constant.
- 4. a) State and prove Weierstrass's theorem.

(Or)

- b) Derive Laurent series
- 5. a) Derive Jensen's formula.

(Or)

b) Show that $\Gamma(1/6) = 2^{-1/3} (3/\pi)^{\frac{1}{5}} \Gamma(1/3)^2$.

SECTION - B (3 X 15 = 45 Marks) Answer **ANY THREE** Questions.

- 6. Prove that following:
- i) If f(z) is analytic and non-constant in a region Ω , then its absolute value |f(z)| has no maximum in Ω .
- ii) If f(z) is analytic for |z| < 1 and satisfies the conditions $|f(z)| \le 1$, f(0)=0,then $|f(z)| \le |z|$ and $|f'(0)| \le 1$. If |f(z)| = |z| for some $z \ne 0$,or if |f'(0)| = 1,then f(z) = cz with a constant c of absolute value 1.
- 7. If p dx + q dy is locally exact in Ω , then prove that \int_{γ} p dx + q dy = 0 for every cycle $\gamma \sim 0$ in Ω .
- 8. Evaluate the following integrals by the method of residues
- a) $\int_{0}^{\pi/2} dx / (a + \sin^2 x)$, |a| > 1, b) $\int_{0}^{\infty} x^2 dx / (x^4 + 5x^2 + 6)$
- 9. State and prove Schwarz's theorem.
- 10. State and prove Hadamard's theorem.

N18535 N18535